If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+5x-100=0
a = 6; b = 5; c = -100;
Δ = b2-4ac
Δ = 52-4·6·(-100)
Δ = 2425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2425}=\sqrt{25*97}=\sqrt{25}*\sqrt{97}=5\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{97}}{2*6}=\frac{-5-5\sqrt{97}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{97}}{2*6}=\frac{-5+5\sqrt{97}}{12} $
| 1+7u=5u+25 | | (x–2)(x+5)=0 | | 11(2y-4)-7y=23 | | b^2-3=507 | | 1.06^x=3 | | 6(x+1)=6x-4 | | 6(x+8)=14x-48 | | 5x-3*6x-5=-76 | | -9+b/4=-7 | | -4y=16/3 | | x+5/2-9=2x-6/3 | | 196+2h=1062 | | 8x(x-1)=3x+12 | | 2+x/9=-4 | | 49b^2+5=9 | | -3(3x-6)=9(2+x) | | -4/5(x+15)=60 | | a=5/7,a+1/3= | | 3x+1/8=2x-3/7 | | 7+n×12=0 | | 40^2x+40^x=6 | | 15=1h | | 2x-3x+7x=13 | | 8(5^2x)+8(5^x)=6 | | H(t)=16t^2+90t | | 3x+20=2x-40+2+20 | | 8-5w=-237 | | V-9+3(3v+3)=-2(v+8) | | 4x+6=8x-12 | | 8(5^2x)+(5^x)-6=0 | | y=12(3)+7 | | 692=4(x+16) |